8-1 BC Calc (2_9_15-2_10_15).notebook February 10, 2015

8-1 Sequences

Learning Objectives:

| can define a sequence (arithmetic or geometric)
with a formula (recursive or explicit).

| can graph a sequence

| can find the limit of a sequence
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Explicit Formula
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Arithmetic Sequences

You add/subtract the same amount each time

3,5,7,9,11, ...
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Arithmetic Sequence Formulas

Explicit Formula
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a, = nth term

a; =15t term

n = # of terms

d = common difference

Recursive Formula
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a, = nth term

a, =1t term

n = # of terms

d = common difference
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Ex1. Find

a.) Common difference
b.) Explicit Formula
c.) Recursive Formula

d=73
-2,1,4,7, ...
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Geometric Sequences

You multiply/divide by the same amount each
time

3,6,12, 24,48, ...
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Geometric Sequence Formulas

Explicit Formula

a, = nth term

a; =15t term

n = # of terms

r = common ratio

Recursive Formula
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a, = nth term

a, =1t term

n = # of terms

r = common ratio
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Ex2. Find
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a.) Common ratio
b.) Explicit Formula
c.) Recursive Formula
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Ex3. The 3@ term of a geometric sequence
is 16. The 7t" term is 4096. Find
a.) Common ratio

b.) The first term
c.) Explicit formula for the nth term
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Limit
Let L be a real number. The sequence a, has limit

L as n approaches infinity, then a,, is sald to
converge to L. If the terms in the sequence grow

- T e BT e

unbounded (or do not go anywhere specific), the
limit is said to diverge.
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Ex4. Does this sequence converge or diverge?
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The Sandwich Theorem for Sequences

vai-imﬁf" =é1mcr=f_f and a,<b,<c, for
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Ex5. Show that the sequence «,=

converges and find its limit
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L\, L o4T7 .

™=,
o

11
Fi

Q=

\ ‘.M < -
e

Jan 30-8:45 AM

14



February 10, 2015

8-1 BC Calc (2_9_15-2_10_15).notebook

is either
g.

icif

ton

equence IS mono

N
1

=
3
kTS =
]
3
= 1b
&
g /]
M \
il
e~ P LTIlﬂ
E Es /
il Mm
(] ']
8l g LS
N ~
e ",
S E Jl‘_/
S N,
E w
) y
B e
= L
.
- P
s
] ' ~a <
(=] = _ﬁ_u ﬂ_u
n
J=
1) L]
mu “.d
g 5
m. o]
o 0o
= i
v @ 5 g
e L 2 I
o = 2 35
= Iy o o
2o 2o
S 3 =
=W
o L'y

Jan 30-8:45 AM

15



8-1 BC Calc (2_9_15-2_10_15).notebook

February 10, 2015

bounded above

ni
11

- "\I
such thata, <M
number M is ca
bound.”

for alln. The
lled the “upper

A sequence is bounded below

e % s % % = = = = = = =
—

if there is a real number M
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A sequence is bounded if it is
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Bounded Monotonic Sequence Theorem

If a sequence {a,} is bounded and monotonic, then it
must converge.
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Homework

Pg441#2,3,6,7,9,11, 13, 15-
17,23, 25, 27, 31, 33, 34, 35,
37-39, 44-54
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